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16.1 Types of Simulation Models TN [ 0%
L Hierarchical structure of simulation models & TONGJI SEM
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16.1 Types of Simulation Models TN il B 5%

L Hierarchical structure of simulation models(cont.) &2 TONGJISEM

m The two major categories of simulation models are static and dynamic.
In a static simulation, time evolution is not important, while in
dynamic simulation it is.

= We will focus on dynamic simulation in this course.

m Within dynamic simulations, the two main categories are discrete
event simulation and continuous event simulation.

m In continuous event simulation, the relevant random variables change
continuously and the typical way of modeling these involves solving
differential equations.

m In discrete event simulation, the events of relevance happen at
discrete points in time and the relevant random variables stay constant
between discrete events.

m We will focus on discrete event simulation in this class. eamea face couss
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16.2 Discrete event simulation approaches il 3 £ 4

TONGJI SEM

L Time-driven vs. Event-driven

m Within discrete event simulation, there are two general approaches:
time-driven simulation (also called fixed-time-increment simulation)
and event-driven simulation (also called event paced simulation).

m In time-driven simulation, the time is advanced by regular intervals,
irrespective of whether any event happens during that regular time
increment or not. This is useful in certain settings, e.g. large scale
simulations with several small events occurring frequently.

m In event-driven simulation, clock is advanced only to certain instants
in time, when important events occur. This approach is computationally
efficient when the focus is on important but less frequent events and
the models are often more detailed. In this class, we will focus on
event-driven simulation.

m A large majority of useful event-driven simulations can be thought of as
generalized queuing systems or queuing networks. CAMEA [ % s Equis
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16.2 Discrete event simulation approaches RN [l i 5 0%

L Core entities of event-driven simulation &2/ TONGJISEM

m In an event-driven simulation, the following entities are tracked:
1.

Simulation clock: Indicates the amount of time that passed since
the simulation started.

. State of the system: Set of variables whose values completely

define the present status of a system being simulated.

. Events: Instants of time when the state of the system changes. The

most important component of an event-driven simulation. System
state is updated and information is recorded after each event.

. State transition: Set of changes in the state of the system when an

event occurs.

. Simulation end: When the simulation clock exceeds a pre-specified

time or a pre-specified number of certain types of events, the
simulation is stopped.
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16.3 Example of event-driven simulation RN [l 1 4405

L The core entities of the M|M|1 queuing model &2 TONGJISEM

m Simulation clock: It is convenient to start with an empty system. First
customer arrives when the simulation starts. First service starts with
the entry of the first customer.

m State of the system: Described by a single variable N(t)= Number of
customers in the queueing system at time t.

m Events: There are two main types of events, (1) arrival of a customer,
and (2) service completion for the customer currently in service.

m State transition: N(t) =

N(preceding event) + 1 if the event is an arrival
{N (preceding event) — 1 if the event is a service completion
= Simulation end: When simulation clock exceeds a pre-specified limit
or when number of customers exceeds a pre-specified limit.
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16.3 Example of event-driven simulation

L M|M|1 queuing model definition

m A,: Arrival time of customer n.

m D, : Departure time (service completion time) of customer n.

m H,: Inter-arrival time of customer n (i.e., time between arrivals of
(n — 1) and nt" customers).

mS,: Service time of customer n.

mA,;=0,A4, =4, ,+H, forn=23,...

m Service start time for customer n = max(4,,D,,_1).

mD,=S,,D,=S5,+max(4,,D,_,) forn =23, ..

mH, and S, are two exponentially distributed random variables.

m In MATLAB, these exponentially distributed random variables can be
generated as —log(rand())/A and —log(rand())/u respectively.

m Alternatively, we could also use poissrnd(A) and poissrnd(u)

-4:-‘: E. | Ili‘l iﬁ ?z}ﬁ
&2/ TONGJI SEM
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16.3 Example of event-driven simulation N il A

L M|M|1 Simulation model implementation & TONGJISEM

mSo the implementation will be as follows.
FORN = 1:n,,4
*H, = —log(rand())/A.
*Sp = —log(rand())/p.
(A, +H, ifn>1

0 ifn=1
.Dn — :Sn + maX(An; Dn—l) if n > 1.
(51 ifn=1
*(optionally) IF Dy, > Tipgx, THEN STOP.

END
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16.3 Example of event-driven simulation TN il £

LEstimating System Statistics &/ TONGJISEM
m In case of the M|M|1 example, the relevant system statistics are, W,

L, W, and L,. They can be estimated using the following formulas.
Assume that M is the total number of customers simulated.

M —
N W - Zn=1(Dn An).
M

M _
m ) = 2n=1Pn4n) w9y

Dyp

M — A —
.Wq — Zn=1(DT;VIAn Sn).

_ Zgld:l(Dn_An_Sn)
. L _ °
q Dy
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16.4 Statistical analysis of results of a simulation TN [l i 5 4%

LStatistical Issues & TONGJISEM
m Statistical analysis of results of a simulation can be difficult.

m Simulation results can be thought of as analogous to collecting a
physical sample. So we could conduct hypothesis testing and
confidence interval estimation.

m If we are interested in estimating the system characteristics under a
steady state:

* Check for the impact of initial conditions.

* Ensure that the initial transient period is ignored, by discarding
initial set of observations corresponding to a period called the
simulation warm-up period.
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16.4 Statistical analysis of results of a simulation TN [l i 5 4%

LStatistical Issues (cont.) &2/ TONGJI SEM
m Selection of starting condition can sometimes be tricky.

m Successive samples are often known to be correlated (e.g. wait times
of successive customers in the M|M|1 example).

* Think of the tradeoff between many runs versus a single run
partitioned into multiple data points.
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16.5 Repair Shop Case Study TN [l i 2545

L Scenario description of a simulation mode &/ TONGJISEM

m At a factory, M, or more machines need to be working at any point of
time, to keep the factory in operation. There are M, + S, total
machines, M, operational and S, spare. Machines fail according to a
known random process. When a machine fails, it is sent to a repair shop.
The time to fix the machine is also a random variable with known
distribution. Starting from a state where all M, + S, machines are
operational, what is the expected time until the factory has to halt
operation for the first time?

m Let us assume that the machines are repaired, one at a time, in the
order in which they enter repair facility. Let the repair time of each
machine be uniformly distributed between 0 and R hours and let the
time till failure of each machine in operation be exponential with A per

CAMEA | *
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16.5 Repair Shop Case Study

=X\ Il 5 &8 4%

L Machine maintenance dynamic diagram & TONGJISEM
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16.5 Repair Shop Case Study N [l i 854

4 The core entities of the simulation model &2/ TONGJISEM
m Simulation clock: Start with the system having no failures yet.

m State of the system: Described by a single variable N(t) that indicates
the number of machines down (i.e., in the repair facility) at any time.

m Events: An event happens when either a previously working machine
fails, or when a repair is complete.

m State transition: N(t) =

N (preceding event) + 1 if the eventis a failure
N(preceding event) —1 if the event is a repair completion

= Simulation end: When simulation clock exceeds a pre-specified limit or
when the state of the system equals S, + 1.
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16.5 Repair Shop Case Study TN [l i 2545

L Model definition and event scheduling rules &2/ TONGJISEM

m A, = Arrival time of the nt" arrival into the repair facility.
m D, = Departure time of the nth departure from the repair facility.

m F,, = Time between (n — 1)t and nt" failure (nth inter-failure time).
Note that F; is defined as the time from simulation start until first
failure.

m S, = Repair time for nt" failure.

mA, =F;, A, =A4,_1 +E, forn =273, ... After computing A,,, check the
state of the system N(4,,). If N(4,,) > S,, then stop simulation.

m Start time of the first repair = A;.
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16.5 Repair Shop Case Study RN [l i 5 0%

L Model definition and event scheduling rules (cont.) &/ TONGJISEM

m Start time of the n'" repair = max(4,,,D,,_{) forn = 2,3, ....
mD,=S,+A,, D, =S, +max(4,,D,_,) forn=23,..

m F, is an exponentially distributed random variable with parameter AM,.
Note that this simplifies the simulation significantly (Why?).

S ~U|O,R].
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16.5 Repair Shop Case Study

N il Y £545
L Simulation model implementation &2/ TONGJISEM

m So the implementation will be as follows.
FORn = 1:n,,4,
* By = —log(rand())/(AMp)
°*S,=rand() * R

| =<fAn—1+Fn lfn>1
S U ifn=1

o, _ [Sn+max(4y, Doy) if n>1
n_kS]_‘I'Al lfn:]_

*IF n> S, and A, < D,_s, THEN EXIT (Why?)
*IF D, > T4, THEN EXIT
END
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Chapter 16 Event-Driven Simulation « Brief summary I g 2o 38

Objective :

Key Concepts :
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